ISA101: From Philosophy to Operation
About the Presenter

Nicholas Sands, CAP, PE

- ISA Fellow
- Technology Fellow at DuPont
- Alarm management and HMI best practice leader
- 25 years of experience in chemical plants
- Co-chair of ISA18 standard committee
- Secretary of IEC 62682 standard committee
- ISA Vice President of Standards and Practices
Outline

- Background
- HMI Lifecycle
- HMI Philosophy
- HMI Style Guide and Tool Kit
- User Requirements
- Testing
- Training
- Support
- Questions
Background: The Last Panel Board

- Plant originally built with pneumatic controls
- Controls migrated to Single Loop Controllers (SLCs) in 1986
 - Panelboard HMI (Human Machine Interface)
 - Hardwired SIS (Safety Instrumented System)
Background: The Replacement

- New Control System
 - DCS Controller
 - DCS HMI
 - SIS
ANSI/ISA-101 lifecycle to develop and maintain an HMI
- ISA-101.01 HMI for Process Automation Systems
For projects, start with system standards

- HMI Philosophy document
 - Provide guiding principles and conceptual foundation for HMI design (includes details on how HMI is designed and used)

- HMI Style Guide
 - Apply guiding principles and concepts of the HMI Philosophy to provide implementation examples and guidance

- HMI Toolkits
 - Generate all graphical symbols and other supporting elements as required to implement the HMI Style Guide
HMI Philosophy

- Philosophy
 - Overall guiding document for HMI design and management
 - Emphasizes ergonomics and performance
 - Document objectives around situation awareness
 - Documents requirement for MOC
 - Document other processes (task analysis)
 - Document “rules”
 - Defines terms
The Process Display shows all important Process Variables, Alarms, and Controls related to a given Process or subsystem.

The purpose of the Process Display is to provide Operator access to operate individual objects for a process or subsystem.

Many common operating tasks are performed from Process Displays.

Rules:

- Level 3 Rule: Every alarm, interlock and control point is shown on a level 3 graphic.
- Level 3 Corollary: If a point does not alarm interlock or control it is not shown on a level 3 graphic.
- Exceptions are allowed.
• From ISA101.01
HMI Style Guide & Toolkit

- **Style Guide**
 - Vendors offer style guides
 - Designed on ASM or HPHMI principles

- **Toolkit**
 - Display of selected and approved symbols
 - Started with vendor library
 - Modified or configured to meet user requirements
 - Control changes to the toolkit
Design

• Console Design
 – To provide hardware and software design for the Console. This includes furniture and supporting systems.

• HMI System Design
 – Identify design basis for the HMI system.

• User, Task, Functional Requirements
 – Identify primary and secondary requirements supported in the HMI.

• Display Design
 – Identifies conceptual design for displays and the navigation hierarchy. (This may include some prototype displays on complex applications or processes).

• Review
Console and System Design

- **Console Design**
 - Mostly vendor standards
 - Single area
 - Two stations on a desk
 - Mouse issues

- **System Design**
 - Mostly vendor standards
 - User groups
 - Some modifications for user requirements

- **Display Design**
 - Template display
 - Display and font size
User and Task Requirements

• Task Analysis
 – Informal method
 – Review each operating procedure against the displays
 – Verify each action can be taken
 – Look for ways to improve the execution by modifying display content
 – Where needed, develop task specific displays
Implement

- **Build Displays**
 - Complete construction of displays and supporting items. (User review occurs in the design stage, which include prototypes).

- **Build Console**
 - Complete construction of console hardware and software. Test viewing angles, screen elevations, keyboard and input device placement and location of other elements.

- **Test**
 - Integrated Test of HMI and Console.

- **Train**
 - Train Users.

- **Commission**
 - Final testing of HMI in Production Environment.

- **Verification**
 - Verify HMI Ready to Operate.
Build Displays and Consoles

- **Build Console**
 - Time consuming to work through system details

- **Build Displays**
 - Focus on flow and simplification
 - Built L3 displays first
 - Simple process with 6 main operating displays (L3)
 - Many more detailed displays (L4)
 - Built 1 overview display (L1/L2) last
 - Many iterations with toolkit changes
• Operator training in 4 stages
 – DCS and HMI Basics
 – Review of all features of symbols, menus, faceplates…
 – Screen by screen training
 – Review each loop on each level display
 – Loopback simulation
 – Practice basic interfacing with simple models
 – Dynamic simulation on tasks
 – Startup, shutdown, repeat
Testing, Commissioning & Verification

• Testing
 – Completed with dynamic simulation
 – Real configuration in simulated controller

• Commissioning & Verification
 – Done during shutdown
 – Completed with DCS controller commissioning
 – Released for operation
ISA 101 Results

• Much the same
 – Most steps are the same steps used in past projects
• But, a few differences
 – Use of toolkit vs library
 – Deeper task analysis than P&ID approach
 – Formalization of training on philosophy
• Benefits
 – Opportunity to standardize terminology
 – Opportunity to map activities to project phases
Questions?
Thank you for attending ISA PCS2015!